Kisallioppiminen.fi Logo

beta kisallioppiminen.fi MAB4 - Matemaattisia malleja

$\def\vi{\bar{\imath}} \def\vj{\bar{\jmath}} \def\vv{\bar{v}} \def\vu{\bar{u}} \def\vw{\bar{w}} \def\va{\bar{a}} \def\vb{\bar{b}} \def\vc{\bar{c}} \def\vk{\bar{k}} \def\vn{\bar{n}} \def\pv{\overline} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\N{\mathbb{N}} \def\Z{\mathbb{Z}} \def\pa{\mathopen]} \def\pe{\mathclose[} \def\lb{\mathop{\mathrm{lb}}} \require{color} \newcommand\T{\Rule{0pt}{1em}{.3em}} $

Eksponentiaalinen malli

Tämän luvun tavoitteena on, että ... Osaat

Tässä luvussa tutustutaan niin sanottuun eksponentiaaliseen malliin. Matematiikassa eksponentiaalisella mallilla kuvataan ilmiöitä, joissa muutos on kiihtyvää tai hidastuvaa niin, että tietyllä ajanjaksolla muutos on aina yhtä monta prosenttia muuttuvan suureen senhetkisestä arvosta. Eksponentiaalinen kasvu siis tarkoittaa, että mitä suurempi suureen arvo on, sitä nopeammin se myös kasvaa.

Eksponentiaalisena mallina voi toimia jokin eksponenttifunktio tai geometrinen lukujono. Mallinnuksen yhteydessä saatetaan päätyä ratkaisemaan eksponentti- tai potenssiyhtälöitä. Näihin liittyviä asioita opiskellaan ja kerrataan seuraavissa kappaleissa.

Alla on mallinnettu koordinaatistossa kolmea erilaista ilmiötä.

  1. Yhdistä ilmiö sopivaan kuvaan:
    Ilmiö Kuva
    Bakteerien määrä optimaalisissa olosuhteissa
    Talletus, joka kasvaa vuosittain korkoa korolle
    Elimistössä olevan kofeiinin määrä kahvitauon jälkeen
  2. Yhdistä eksponentiaalinen malli sopivaan kuvaan:
    Malli Kuva(t)
    Eksponenttifunktio
    Geometrinen lukujono

Kun tutkitaan, missä kohdassa eksponenttifunktio saa tietyn arvon, päädytään eksponenttiyhtälöön. Esimerkiksi jos halutaan tietää, missä kohdassa funktio $f(x) = 1{,}5^x$ saa arvon $4$, päädytään tutkimaan yhtälöä $$f(x) = 4$$ eli yhtälöä $$1{,}5^x = 4.$$ Tämä yhtälö voidaan ratkaista graafisesti piirtämällä funktion $f(x) = 1{,}5^x$ kuvaaja koordinaatistoon ja katsomalla, mikä kuvaajan piste on korkeudella 4:

Piirroksesta nähdään, että kuvaajan piste on korkeudella 4 likimain kohdassa $x \approx 3{,}4$. Tarkemmin asia voidaan ilmaista logaritmin avulla. Logaritmin käsite määriteltiin kurssilla MAY1:

MÄÄRITELMÄ: LOGARITMI

Oletetaan, että kantaluku $k$ on positiivinen ja $k \neq 1$. Positiivisen luvun $a$ $k$-kantainen logaritmi tarkoittaa lukua $x$, jolla on ominaisuus $k^x = a$. Luvusta $x$ käytetään merkintää $\log_k(a)$.

Eksponenttiyhtälön ratkaisu eli tuntematon eksponentti voidaan siis ilmaista logaritmin avulla. Esimerkiksi yhtälön $$1{,}5^x = 4$$ ratkaisu on $$\log_{1{,}5}(4).$$ Tietokoneella tai nykyaikaisella laskimella saadaan näin tarkempi likiarvo: $$\log_{1{,}5}(4) \approx 3{,}4190226.$$

Päättele tai selvitä kokeilemalla, mikä eksponentin pitää olla, jotta yhtälö toteutuu. Ilmaise vastaus myös logaritmin avulla muodossa $x = \log_k(a) = b$.

  1. $3^x = 9$
  2. $2^x = 16$
  3. $5^x = 125$.

  1. $x = \log_3(9) = 2$
  2. $x = \log_2(16) = 4$
  3. $x = \log_5(125) = 3$

Eksponentiaalisen mallin soveltaminen voi johtaa myös niin sanottuun potenssiyhtälöön. Jos kantaluku on tuntematon ja eksponentti on jokin kokonaisluku $n \geq 2$, päädytään potenssiyhtälöön $$x^n = a.$$ Toisen asteen potenssiyhtälö opittiin ratkaisemaan neliöjuuren avulla kurssissa MAB2. Esimerkiksi yhtälöllä $$x^2 = 7$$ on kaksi ratkaisua $\sqrt{7}$ ja $-\sqrt{7}$: Positiivinen ratkaisu on $\sqrt{7} \approx 2{,}6$. Negatiivinen ratkaisu on sen vastaluku.

Luvun $7$ neliöjuurelle pätee määritelmän mukaan kaksi asiaa: $$\sqrt{7} \geq 0 \quad \text{ ja } \quad \left(\sqrt{7}\right)^2 = 7.$$

MÄÄRITELMÄ: NELIÖJUURI

Luvun $a \geq 0$ neliöjuuri tarkoittaa lukua $b \geq 0$, jolle pätee $$b^2 = a.$$ Luvun $a$ neliöjuurelle käytetään merkintää $\sqrt{a}.$

Korkeamman asteen potenssiyhtälöiden ratkaisujen määrä riippuu vastaavien potenssifunktioiden $f(x) = x^n$ kuvaajien muodosta. Jos eksponentti $n$ on parillinen, kuvaaja muistuttaa muodoltaan U-kirjainta ja ratkaisuja on 0-2 kappaletta yhtälöstä riippuen. Esimerkiksi yhtälöllä $x^4 = 3$ on kaksi ratkaisua, joita merkitään $\sqrt[4]{3}$ ja $-\sqrt[4]{3}$:

Jos eksponentti n on pariton, kuvaaja muistuttaa X-kirjaimen toista vinoviivaa ja ratkaisuja on aina yksi. Esimerkiksi yhtälöllä $x^3 = 3$ on vain yksi ratkaisu, jota merkitään $\sqrt[3]{3}$:

Kummassakin tapauksessa ratkaisut ilmaistaan juurten avulla.

MÄÄRITELMÄ: N:S JUURI

  • Jos $n \geq 2$ on parillinen kokonaisluku ja $a \geq 0$, luvun $a$ $n$:s juuri $\sqrt[n]{a}$ tarkoittaa lukua $b \geq 0$, jolle pätee $$b^n = a.$$
  • Jos $n \geq 3$ on pariton kokonaisluku, luvun $a$ $n$:s juuri $\sqrt[n]{a}$ tarkoittaa lukua $b$, jolle pätee $$b^n = a.$$

Eksponenttifunktioita vastaavan tärkeän lukujonojen luokan muodostavat geometriset lukujonot. Niitä tutkittiin jo kurssissa MAY1

MÄÄRITELMÄ: GEOMETRINEN LUKUJONO

Lukujono $(a_n)$ on geometrinen, jos ja vain jos sen kahden peräkkäisen jäsenen suhde eli osamäärä on aina sama. Toisin sanottuna jos on olemassa sellainen luku $q$, että $$\frac{a_{n+1}}{a_n} = q$$ kaikilla positiivisilla kokonaisluvuilla $n$.
Suhde $q$ on nimeltään jonon suhdeluku.

TEOREEMA

Geometrisen jonon $(a_n)$ jäsenet saadaan laskettua, jos tiedetään jonon ensimmäinen jäsen $a_1$ ja jonon suhdeluku $q$, sillä kaikilla positiivisilla kokonaisluvuilla $n$ pätee $$a_n = a_1q^{n-1}.$$

Varmista, että olet oppinut tämän luvun keskeiset asiat tekemällä itsearviointitesti opetus.tv:n polku-palvelussa. Samalla harjoittelet omien ratkaisujesi pisteyttämistä pisteytysohjeiden avulla.