Kisallioppiminen.fi Logo

beta kisallioppiminen.fi MAA2 - Polynomifunktiot ja -yhtälöt

$\def\vi{\bar{\imath}} \def\vj{\bar{\jmath}} \def\vv{\bar{v}} \def\vu{\bar{u}} \def\vw{\bar{w}} \def\va{\bar{a}} \def\vb{\bar{b}} \def\vc{\bar{c}} \def\vk{\bar{k}} \def\vn{\bar{n}} \def\pv{\overline} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\N{\mathbb{N}} \def\Z{\mathbb{Z}} \def\pa{\mathopen]} \def\pe{\mathclose[} \def\lb{\mathop{\mathrm{lb}}} \require{color} \newcommand\T{\Rule{0pt}{1em}{.3em}} $

MAA2 - Polynomifunktiot ja -yhtälöt

Kurssin tavoitteena on, että

  • harjaannut käsittelemään polynomifunktioita
  • osaat ratkaista toisen asteen polynomiyhtälöitä ja tutkia ratkaisujen lukumäärää
  • osaat ratkaista korkeamman asteen polynomiyhtälöitä, jotka voidaan ratkaista ilman polynomien jakolaskua
  • osaat ratkaista yksinkertaisia polynomiepäyhtälöitä
  • osaat käyttää teknisiä apuvälineitä polynomifunktion tutkimisessa ja polynomiyhtälöihin ja polynomiepäyhtälöihin sekä polynomifunktioihin liittyvien sovellusongelmien ratkaisussa

Keskeiset sisällöt

  • polynomien tulo ja muotoa $(a + b)^n$, $n \leq 3$, $n \in \N$ olevat binomikaavat
  • 2. asteen yhtälö ja ratkaisukaava sekä juurten lukumäärän tutkiminen
  • 2. asteen polynomin jakaminen tekijöihin
  • polynomifunktio
  • polynomiyhtälöitä
  • polynomiepäyhtälön ratkaiseminen

Kurssimateriaali on jaettu neljään lukuun: Ensimmäisen asteen polynomifunktio, Toisen asteen potenssifunktio ja neliöjuuri, Toisen asteen polynomifunktio sekä Korkeamman asteen potenssi- ja polynomifunktiot.

Pääajatus kurssimateriaalissa on, että matematiikkaa oppii parhaiten tekemällä matematiikkaa. Materiaali on tämän vuoksi kirjoitettu niin, että teet tehtäviä käytännössä koko ajan. Jokainen luku sisältää kolme eri tehtäväsarjaa. Ensimmäisen tehtäväsarjan tehtävät ovat teorian seassa. Tarkoitus on, että etenet materiaalissa tekemällä jokaisen näistä tehtävistä. Voit hyvin tehdä tehtäviä yhdessä kaverin kanssa ja voit kysyä opettajalta heti, jos et ymmärrä jotain asiaa. Asia voi olla jokin tietty tehtävä, teoriassa oleva virke tai esimerkiksi vieras matemaattinen symboli. Pääasia on, että sinä itse teet tehtävät ja ymmärrät, mitä teet. Tämän tehtäväsarjan jälkeen kyseisen luvun teoria on käsitelty ja on aika harjoitella ja syventää juuri opittua. Ennen tätä opettaja pitää ehkä yhteisen opetustuokion tai -keskustelun, jossa pohditaan yhdessä luvun keskeisiä asioita tai työskentelyssä esiin tulleita haastavia kohtia. Mahdollisen opetustuokion jälkeen jatka harjoittelua luvun lopussa olevien kahden tehtäväsarjan tehtävien avulla. Luonnollisesti mitä enemmän harjoittelet, sitä paremmaksi tulet. Kun olet valmis, tee luvun lopussa oleva(t) itsearviointitesti(t). Niiden tarkoitus on kertoa sinulle, oletko ymmärtänyt luvun olennaiset asiat ja kehittää samalla oman oppimisesi arviointia, joka on tärkeä tulevaisuuden taito. Testeissä pärjääminen ei vielä tarkoita, että osaat luvun asiat esimerkiksi kiitettävällä tasolla, vaan testit keskittyvät vahvan perusosaamisen tutkimiseen. Ennen siirtymistä seuraavaan lukuun opettaja haluaa ehkä vielä koota luvussa opittuja asioita sekä antaa palautetta oppimisesta ja sen etenemisestä yhteisessä opetuskeskustelussa.